Showing posts with label explorare spatiala. Show all posts
Showing posts with label explorare spatiala. Show all posts

Stele verzi – pe umerii atomului: naveta nucleară (2)

Radiatie

Eixsta insa o problema, care a impactat designul RNS-ului si a modulelor sale: radiatia. Vedeti voi, dupa cum stim, un motor NERVA poate emite radiatie in patru scenarii diferite, la diferite nivele:

  1. motor nepornit: radiatie practic inexistenta. Uraniul e inert, si se descompune natural, nefiind mai radioactiv decat in starea sa de metal greu.
  2. motor in timpul arderii: aici este varful radiatie, cu un mix intens de radiatie neutronica si raze gamma.
  3. motor imediat dupa ardere: el nu mai produce radiatie neutronica intensa, insa razele gamma se pastreaza; in aceasta etapa, materialele radioactive cu durata de injumatatire scurta se descompun
  4. motor la interval de ore/zile dupa ardere: inca emite radiatie gamma intensa, chiar daca la un nivel de sute de ori mai mic decat in timpul arderii. Produsii de fisiune care se descompun rapid dispar, insa dureaza decenii pentru cei cu viata medie sa dispara. Rata de scadere a radioactivitatii scade pe masura ce elementele active principale devin cele cu varsta medie, cum ar fi strontiu-90 sau cesiu-137. Pentru disparitia lor, se estimeaza ca timpul ar fi de 10 ori durata de injumatatire, adica cam 300 de ani. Motorul va fi radioactiv si apoi, multumita elementelor transuranice produse in timpul functionarii, dar genul lor de radiatie predominanta, adica descompunere alpha si beta, e mult mai usor de ecranat.

Un alt aspect ce trebuie reamintit din articole precedente este faptul ca numai o parte marunta din cantitatea de material fisionabil este folosita in timpul arderii. Procentele variaza in functie de gradul de imbogatire, dar putem estima ca daca pornim cu un motor ce foloseste 90% U-235 (Adica aproape de nivelul unei arme atomice) la finalul a 15 arderi, va fi folosit cam 5-10% din el.
De ce asa putin? Pentru ca multe dintre produsii de fisiune ai reactiei (asa-numita “cenusa atomica”) sunt otravuri neutronice, care inabusa reactia nucleara. Asadar, chiar daca mai o groaza de combustibil, nu o poti folosi.

Teoretic, poti lua motorul (extrem de radioactiv) sa extragi combustibilul din el, si sa-l reprocesezi. Asta se intampla pe Pamant pentru reactoarele franceze, care isi trimit combustibilul folosit la Le Hague. Acolo, comubstibilul este topit, si produsii de fisiune impreuna cu elementele transuranice sunt extrasi, ramanand numai uraniul nefolosit. Produsii de fisiune pot fi apoi stocati, iar elementele transuranice refolosite (multe dintre ele sunt ele insele fisionabile).

E…. un proces complicat, care necesita practic o uzina de reprocesare pe orbita. Procedeele folosite in Franta sunt de tip “apoase” (aqueous, in engleza) si sunt aceleasi folosite ca si pentru armele atomice. Dar asta e fiindca La Hague are scop dual, civil si militar. Exista procedee precum electrorafinarea si piroprocesarea care ar ieftini procesul (obtinand material mai putin pur, inadecvat armelor dar perfect utilizabil in reactoare sau motoare).

Totusi… o rafinarie in orbita nu e ceva ieftin, si nu exista multe indicii ca NASA a cochetat foarte mult cu ideea. In schimb, odata ce modulele de propulsie erau imbacsite de produsi de fisiune si nu mai porneau, ele urmau sa fie puse pe orbite moarte, departe de alti sateliti, unde urmau sa… stea, la fel ca satelitii scosi din uz.

Nus tiu de voi, dar gandul ca ai avea sateliti plini de zeci de kilograme de metale radioactive nu e incantator. Desi nu e cine stie ce pericol pentru planeta, radiatia poate praji din greseala un satelit care se apropie prea mult. Spatiul e deja extrem de radioactiv, asa ca sateltii de inaltimi mari sunt deja ecranati, dar chiar si asa, ecologistii chiar si in anii 70 s-ar fi simtit… stingheri.

Putem specula ca agentia ar fi folosit bazele lunare si orbitale pentru a cosntrui, la un moment dat o uzina mica de reprocesare, daca nu din alt motiv, macar fiindca ar fi insemnat ca puteau folosi uraniul deja lansat, fara a fi nevoita sa importa cantitati mari de pe Pamant din nou. O idee care sprijina principiile modulare si de infrastructura orbitala a IPP. Dar asta ar fi fost intr-un viitor relativ indepartat, dupa multe cercetari.

Dincolo de dificultatile tehnice pentru sfarsitul vietii acestor module era faptul ca erau terbil de radioactive in timpul functionarii si imediat dupa. In spatiu nu ai atmosfera asadar radiatia nu e diminuata decat de distanta. Motorul NERVa prevedea un scut anti-radiatie care sa umbreasca partea frontala a navei, unde urmau sa stea astronautii:

 

Problema e ca a te apropia de RNS din laterala devine o propunere extrem de riscanta. Practic, fara atmosfera, zona de excluziune e de ordinul kilometrilor, in functie de puterea motorului. Asta e problematic daca doresti sa andochezi la o statie spatiala, alt vehicul sau pur si simplu sa transferi incarcatura cargo.

Cele doua mari nume in domeniu sunt Holmes F. Crouch, care a scris lucrarea “Nuclear Space Propulsion” in 1965, in care a calculat fluxul de radiatie pentru un motor NERVA obisnuit.

Diagramele de radiatie un jurul unui motor NERVA. Multumim domnului Crouch si site-ului Atomic Rockets

 

Problema radiatiilor nu era simpla de rezolvat, daca tinem cont ca, fiind vehicule orbitale, ele trebuies sa fie cat mai usoare. Asadar, sa inglobezi motorul in plumb nu era o idee castigatoare. Chiar si scutul-umbrela, cu arcul sau redus, era greu de 1.5 tone.

Inginerii de casa ai firmelor au adoptat solutii interesenta pentu a incerca sa contracareze efectele motorului. Astfel se explica de ce vehiculele tind sa fie lunguiete, si sa puna rezervorul intre sarcina utila si motor. Masa de reactie putea, astfel, sa joace rol de masa de ecranare.

Problema era ca masa de reactie se termina pe parcursul arderii, iar la final ramane foarte putina in rezervor. Asta explica si de ce partea anterioara a conceptelor au forma naterioara de tip trunchi de con. Mai mult, unele design-uri aveau rezervoare secundar inauntru, pentru a se asigura ca va fi o masa de combustibil intre sarcina si motor pana in ultimele secunde ale arderii. Uneori vorbim de rezervoare in forma de coloana, alteori in forma de butoiase secundare interne.

Design pentru RNS Clasa 1, cu coloana centrala (denumita standdpipe) Ea era ultima parte din rezervor care se golea minimizand dozajul primit de echipaj.

 

Chiar si asa, RNS a fost aspur crtiticata pentru nivelul de radiatie pe care-l primeau echipajele. Intr-un raport al NASA contractat companiei Bellcomm, D. J. Osias a criticat complicatiile provocate de radiatia nucleara a motorului, spunand ca analizele erau bazate pe scenarii optimiste de functionare.

Osias a calculat, folosind graficele lui Crouch, ca doza maxima de radiatie pe care ar trebui sa o primeasca un astronaut s-ar situa intre 0.1 si 0.25 de Sievert per an. In schimba, astronautii ar primi 0.1 Sievert de fiecare data cand RNS ar realiza o ardere. Dansul a recomandat ca un alt vehicul sa nu se apropie mai mult de 100 de mile (!!!) lateral de o nava in functiune atata timp cat motorul era in functiune. La o distanta de 16 km, un astronaut ar resimti 0.25 – 0.3 Sievert per ora de la un motor in functiune.

Mai rau e ca RNS-ul orbita Luna la o inatime de 100 de km, ceea ce ar fi insemna ca astronautii trebuiau sa se adposteasca cand trecea deasupra.

Astazi, limita anuala pentru astronauti este de 3 Sievert, cu o limita de cariera de 4 Sievert. Ceea ce inseamna ca dupa 10 arderi complete, astronautul nu ar mai avea voie sa zboare (coincidenta face ca motorul NERVA sa fie inabusit tot dupa 10 arderi complete).
 

Va urma.
 

Marian Dumitriu (Checkmate)

Surse:
1. http://www.projectrho.com/public_html/rocket/realdesigns4.php#id–Reusable_Nuclear_Shuttle_Class_1
2. https://www.wired.com/2012/09/nuclear-flight-system-definition-studies-1971/
3. http://www.projectrho.com/public_html/rocket/spacetug.php#spacetug
4. Pre-Phase A Study for Analysis of a nuclear space tug vol 4 : https://ntrs.nasa.gov/citations/19710011980
5. Pre-Phase A Study for Analysis of a nuclear space tug vol 5 : https://ntrs.nasa.gov/citations/19710011981
6. https://theconquestofspace.com/?p=361
7. https://web.archive.org/web/20120505171808/http://www.energyfromthorium.com/NuclearShipPropulsion.html

The post Stele verzi – pe umerii atomului: naveta nucleară (2) appeared first on Romania Military.

Articol original

Stele verzi – pe umerii atomului: Boeing IMIS

IMIS – Boeing

Punctul culminant al unui deceniu de studii despre misiuni interplanetare cu echipaj uman, sistemul IMIS era cea mai avansata si performanta arhitectura propusa in timpul epocii de aur a NASA. Utilizand cinci trepte modulare cu propulsie nucleara, misiunea era gandita sa asigure accesul unui echipaj uman pe suprafata planetei Marte in orice profil orbital, de la conjunctie si opozitie, cu asistenta gravitationala de la Venus sau fara ea..

IMIS este o abreviere de la Integrated Manned Interplanetary Spacecraft, in traducere nava spatiala interplanetara integrata cu echipaj uman. Raportul care a caracterizat sistemul a fost, la fel ca cele de dinainte, publicat in 4 volume, dintre care primul si ultimul (continand definitia sistemului) sunt disponibile pentru curiosi aici si aici. Primul raport a fost publicat in Ianuarie 1968, in plin avant al misiunilor Apollo, la capatul a 14 lunii de studiu, sub contract cu NASA Langley (numarul constractului fiind N68-19238).

Spre deosebire de majoritatea misiunilor precedente, IMIS lua in calcul descoperirile facute de Mariner 4 referitoare la atmosfera martiana (Venus este inclusa printre posibilele destinatii, dar numai ca survoluri orbitale, din motive de ostilitate extrema a suprafetei).

Capabilitatile acestea extraordinare nu erau lipsite de dezvavantaje: nava in sine era gigantica, si promitea sa fie extrem de scumpa. De altfel, studiul de referinta face un calcul al costurilor pe care le-ar fi presupus un program ipotetic centrat pe aceasta arhitectura, rezultatul fiind o cifra de 30 de miliarde de dolari pentru primele doua misiuni. Dolari ai anilor 60, adica aproximativ cu 50% mai mult decat Apollo (echivalentul modern ar fi undeva in jur de 220 miliarde).

Profilul de misiune preferat era unul dezvoltat de catre NASA Lewis in 1959-1961 si era aplicabil pentru perioada 1975-1990, prima aterizare fiind preconizata in 1985-86, cu un program de dezvoltare de 10 ani, similar cu Apollo.

 

Arhitectura sistemului

Vehiculul era organizat in felul urmator:

Imagine realizata dupa o schema din raportul initial. Adnotatii si cod de culori realizat prin amabilitatea lui Winchel Chung, autorul projectrho

ROZ BOMBON: Motoarele primare – NERVA cu miez solid si cu hidrogen pe post de masa de reactie;
BLEU: Motoare secundare – FLOX/metan, pentru schimbari/ajustari de curs;
ROSU: Modul de propulsie 1 (PM-1). Trei ansambluri NERVA+ rezervor (~5,100 m/s)
ORANJ: Modul de propulsie 2. Un singur ansamblu NERVA+rezervor. Treapta folosita pentru a frana pe orbita martiana (~5,300 m/s)
GALBEN: Modul de propulsie 3. Un singur ansamblu NERVA+rezervor. Treapta folosita pentru plecarea de pe orbita martiana (~5,800 m/s)
VERDE: Incarcatura utila. Modulul de misiune (modulul habitat), Modul de Excursii Martiene (Lander martian), Sarcina utila experimentala, Modul de reintrare terestra (vehicul de aterizare)

Raportul foloseste o exprimare specifica: sarcina utila este denumita “nava spatiala” (spacecraft), cele 5 module nucleare poarta numele de “sistem de acceleratie spatiala” (space acceleration system) si intregul ansamblu poarta numele de “vehiculul spatial” (space vehicle). Asta va fi terminologia pe care o vom folosi si noi.
 

Profilul misiunii

Raportul propune si analizeaza mai multe configuratii posibile de misiuni, impartite pe categorii cum ar fi “misiuni de conjunctie / opozitie”, survoluri rapide sau cu insertie orbitala si sedere de durata pentru Venus si Marte. In total, raportul analizeaza 20 de scenarii diferite, diferentele majore fiind date de masele variabile ale vehiculului, necesitatea incluziunii, dupa caz, a vehiculului de aterizare, s. a. . Duratele acestor misiuni varia intre 460 si 1060 de zile.

Profilul clasic de misiune era pentru un zbor outbound de 200 de zile, o sedere pe suprafata planetei de 30 de zile, si un zbor de intoarcere de 230 de zile, rezultand o durata totala de 460 de zile. Ea se desfasura astfel:

  • vehiculul este intai asamblat pe orbita. Asamblarea se realizeaza folosind o varianta de Saturn V, denumita Saturn V-25(S)U. Acest lansator adauga 4 motoare cu combustibil solid de 156 de inch primei trepte, inlocuia motorul J-2 al treptei a treia cu un motor NERVA nuclear, si adauga o cochilie aerodinamica mult marita, pentru a acomoda rezervoarele treptelor modulare cu un diametru de 10 metri. Ar fi avut inaltimea de 153 metrii (comparativ cu cei 112 metrii ai Saturn C-5), masa la decolare de 6440 tone (comparativ cu 2970 tone pentru C-5) si putea ridica o sarcina utila de 249 tone pe LEO (dubla fata de C-5).
  • Desi nu s-a realizat o diagrama a lansatorului propriu-zis, el ar fi fost similar cu modelul central din diagrama de mai sus, doar cu lungimea ceva mai mare. Saturn C-5-ul folosit de Apollo este cel din extrema stanga

  • odata asamblat, vehiculul incepe arderea de insertie pe traiectoria trans-martiana. Scutul de meteoriti este ejectat, pentru a reduce din masa. Delta-V-ul arderii este intre 3645 m/s si 3989 m/s. La sfarsitul arderii, toate cele trei motoare impreuna cu rezervoarele lor aferente sunt ejectate. Traseul de ejectare este ales in asa fel incat sa minimizeze radiatia emisa catre echipaj si pe un traiect menit a nu intalni planeta Marte sau Luna. Treapta aruncata este astfel inscrisa pe o traiectorie heliocentrica (si poate constitui un pericol de radiatie, dar, in fine…).
  • In timpul tranzitului catre Marte, treapta a doua (PM-2) realizeaza trei corectii de traseu folosind sistemul sau de propulsie FLOX-metan. FLOX este un amestec hipergolic de fluor lichid si oxigen lichid pe post de oxidanti, cu metanul pe post de combustibil. Aspectul hipergolic face ca aprinderile de motor sa se poata realiza cu certitudine, chiar daca amestecul in sine este extrem de exploziv. Prima ardere se realizeaza la 5 zile dupa plecare, urmatoarea la 25 de zile si ultima cu 20 de zile inainte de inscrierea pe orbita martiana.
  • In timpul apropierii de Marte, sistemul secundar de propulsie si scutul de meteoriti sunt ejectate. Treapta a doua, PM-2, realizeaza arderea de captura cu un delta-v cuprins intre 2568 m/s si 2947 m/s, inscriindu-se pe o orbita inalta martiana. Apoi PM-2 este aruncat.
  • Motoarele FLOX-metan al treptei PM-3 reduc orbita navei pana la o altitudine de 1000 km, punand astfel si distanta intre ea si treapta a doua radioactiva.
  • Echipajul petrece urmatoarele 5 zile cautand un posibil loc de amartizare, facand experimente si observatii orbitale, si pregatind MEM-ul pentru amartizare.
  • 3 dintre cei 6 membrii ai echipajului sunt imbarcati pe MEM si amartizeaza la locul pre-decis, sau in apropierea lui daca se dovedeste a fi necorespunzator.
  • Echipajul planetar exploreaza planeta vreme de 30 de zile, in vreme ce echipajul orbital continua experimentele si monitorizeaza operatiunile planetare. Tot atunci se realizeaza eventuale reparatii a vehiculului.
  • La sfarsitul celor 30 de zile, MEM-ul decoleaza din nou si este andocat cu vehiculul orbital. Echipajul si cele 5 tone de mostre adunate sunt tranferate, iar, la final, MEM-ul este si el aruncat.
  • Scutul de meteoriti si sistemul de propulsie al PM-3 este ejectat, si se initiaza arderea motorului NERVA, inscriind vehiculul pe orbit trans-terestra, cu un delta-v cuprins intre 4969 m/s si 5811 m/s. La sfarsitul arderii, PM-3 este si el aruncat.
  • In timpul voiajului spre casa, motoarele FLOX-metan ale modulului de misiune realizeaza si ele trei arderi.
  • Cu o zi inainte de sosire, echipajul si mostrele martiene sunt mutate in modulul de reintrare atmosferica. Modulul de misiune este parasit, realizand o ultima ardere pentru a se da la o parte din calea EEM-ulul.
  • EEM-ul foloseste franare prin frecare atmosferica pentru a-si reduce viteza si a ateriza.

Timpul total al misiunii era cuprins intre 460 si 540 de zile, cu un delta-v total intre 11,400 m/s si 12,400 m/s.

Reprezentare schematica a etapelor misiunii

 

Modulul de propulsie

Caracteristici tehnice ale modulului:

  • Tip motor: NERVA Alpha
  • Lungime motor: 12.2 m
  • Diametrul duzei la evacuare: 4.12 m
  • Masa de reactie: LH
  • Diametrul rezervorului: 10.6 m
  • Lungimea rezervorului: 35 m
  • Masa de reactie: 175 t
  • Volum masa de reactie: 2590 m^3
  • Masa totala: 227 t

Caracteristici tehnice ale motorului:

  • Masa motor: 11585 kg
  • Masa scut de radiatie: 880 kg
  • Masa cadrului cu zabrele: 476 kg
  • Viteza de evacuare: 8338 m/sec
  • Tractiune: 868,000 N
  • Putere reactor: 4000 MW
  • Debit: 108.41 kg/sec

In urmatorul articol intentionez sa acopar un sistem NASA denumit “naveta nucleara reutilizabila”. Ei bine, configuratia acelui sistem era foarte similara cu cea a unui astfel de modul. In esenta, un astfel de modul era alcatuit dintr-un motor NERVA si un rezervor de hidrogen lichid.

Pe componente:

  • rezevorul avea o componenta interna (care era insasi structura de depozitare a hidrogenului) si o cochilie externa. Aceasta din urma era folosita ca si structura de rezistenta in timpul lansarii, dar si ca scut pentru micrometeoriti. Era alcatuita din 4 sectiuni circulare legate prin fasii. Aceste fasii erau ejectate inainte de prima ardere, permitand astfel scutului de meteoriti / cochiliei sa se desprinda. Ramanea numai rezervorul intern pe durata arderii.
  • motorul era de tip NERVA Alpha, o configuratie bazata pe XE-PRIME cu cateva modificari pentru siguranta. Motorul era si el inconjurat de o cochilie/ treapta intermediara cu doua straturi. Stratul exterior era, din nou, cu rol de protectie contra micrometeoritilor si pentru rezistenta la sarcini in timpul decolarii de pe Pamant. Stratul interior era tot pentru sarcini, insa numai in timpul arderii propulsive.

Modulul avea si o linie de alimentare cu diametrul de 20 de cm, pentru a fi conectata cu alte module in timpul misiunii. Astfel, devenea posibil transferul de hidrogen dintr-un modul in altul. Ele prezentau, de asemenea, sisteme de andocare care putea fi de tip mama sau tata, permitand modulelor sa fie conectate ca piesele de Lego.

Rezervorul avea o structura interna cu grinzi cu zabrele, la fel ca sus-mentionata naveta nucleara. Rezervorul, grinzile si suportul motorului erau construite din aluminiu (usor si care nu se fisureaza la temperaturile hidrogenului lichid). Rezervorul era astfel dimensionat pentru a incapea pe un lansator Saturn V (atat ca masa, cat si ca diametru).

Motorul era asezat pe aceasta structura, intr-o incastrare articulata (permitandu-i sa-si schimbe orientarea in timpul arderii).

SUS: Diagrama unui modul de propulsie; JOS: Diagrama motorului NERVA folosit pe modulul de propulsie

Referitor la radiatie, raportul a considerat ca cea mai buna protectie pentru echipaj este hidrogenul aflata in PM-3. Acesta ar fi umbrit habitatul in timpul arderii (care, de altfel, nu ar fi durat decat 27 de minute).

Probleme ar fi aparut in timpul arderii PM-3: pe masura ce nivelul de hidrogen scadea, nivelul de protectie scadea si el. Aici, studiul propune si dezbate doua modalitati posibile de mitigare a problemei: un scut de radiatie format din apa, situat in jurul axului central al puntii a treia din modul, si un strat de oxid de beriliu ca ar fi actionat ca un scut-umbra, situat deasupra motorului. Se dezbat argumentele pro si contra dar, in final, nu s-a reliefat o propunere concreta, configuratia ramanand la latitudinea NASA (cei curiosi pot vedea argumentele la paginile 194-199 in raportul final, aici).
 

Modulul de misiune

Modulul de misiune era partea din nava care ar fi servit drept habitaclu pentru echipaj pe durata misiunii. Nava era preconizata a folosi gravitatie simulata centrifugala, prin modelul “porumbelului in tumba”, similar cu conceptul EMPIRE GD Astfel, in timp ce nava accelera prin arderea motoarelor, directia de inainte ar fi fost inspre podea, iar forta gravitationala ar fi actionat inspre tavan. In timpul voiajului, cand nava incepea sa simuleze gravitatie, directia jos s-ar fi schimbat. Nu se specifica in raport cum s-ar fi imprimat miscarea de rotatie, dar putem presupune ca s-ar folosi propulsoarele auxiliare cu FLOX/CH4 (ele insele fiind articulate). E de mentionat ca rotatia ar fi trebuit oprita ori de cate ori era nevoie de o ardere a motoarelor principale.

MM-ului ii era atasat Modulul de Excursie Martiana (MEM) care ar fi purtat astronautii pe suprafata planetei si inapoi. De asemenea, inspre motoare, era atasat si modulul de reintrare in atmosfera terestra.

MM-ul era impartit in compartimentul echipajului (CC) si sistemele auxiliare. CC-ul insusi avea patru punti, si era de forma cilindrica, cu o lungime de 12.1 m si un diametru de 6.7 m . La fel ca si alte componente ale navei, el avea propriul sau scut pentru micrometeoriti, si avea pereti despartitori semisferici la capete. Volumul total era de 347 m^3, volumul presurizat de 283 m^3, cu un volum liber de 153 m^3, adica 25.5 m^3 per astronaut. Suprafata totala a puntilor ar fi fost de 112 m^2, cu inaltimea tavanului de 2.1 m.

Impartirea CC-ului pe punti era considerata vitala pentru a separa diferite tipuri de activitati pe categorii (spre ex, navigatie, relaxare, igiena, etc) Aranjamentul era de asa natura incat sa minimizeze interfata / distanta intre doua operatiuni de aceeasi natura.

Diferitele dulapuri si cabinete situate pe pereti erau fixate si nu exista posibilitatea de a le scoate pentru a efectua reparatii peretilor exteriori. Acest neajuns a fost, insa, considerat acceptabil dat fiind scutul exterior pentru micrometeoriti (desi raportul mentioneaza ca experimentele realizate pe Manned Orbital Laboratory aratau ca se putea economisi masa renuntand la cochilia-scut si folosind mecanisme cu balamele pentru acces la reparatii).

Diagrama schematica a navei spatiale

Puntea I:
-era menita a fi folosita pentru activitati relativ silentioase. Aici sunt situate cabinele de somn, dispensarul si facilitatile de ingrijire personala. Fiecare membru al echipajului are proria sa cabina, precum si facilitati de depozitare. Cabinele ofera liniste si intimitate echipajului si permit unui membru sa fie izolat daca e necesar. Volumul unei cabine este de aproximativ de 3.1 m^3.
-dispensarul include si facilitati de monitorizare fiziologica si psihologica, echipament medical/dentar si echipament sportiv pentru antrenamente scheleto-musculare si cardio-vasculare.
-de asemenea, sunt incluse un dus pentru gravitatie 0 si toaleta (amuzant denumita “sistem de management al deseurilor”). Langa toaleta este si sistemul de recuperare a apei din urina. Dupa ce este procesata, aceasta este transferata in niste rezervoare de depozitare situate pe Puntea II.
-in portiunea superioara a Puntii I este un chepeg care duce catre EEM (vehiculul de reintrare atmosferica). In centrul podelei, exista un chepeg cu diametrul de 0.91 m, care duce catre Puntea II.

SUS: Diagrama Puntii I; JOS: Diagrama Puntii II

Puntea II:
-cuprinde activitati de mare intensitate: centrul de comanda si control, stocarea si prepararea hranei si zonele de recreere.
-centrul de comanda si control urma a fi ocupat constant, pentru monitorizarea parametrilor navei si traiectoriei
-facilitatile pentru hrana includ provizii pentru apa fierbinte, un frigider/congelator si provizii de hrana pentru 500 de zile. Este inclusa si o zona de cinare.
-alta sectiune a puntii contine si o unitate pentru apa menajera / condensare. Apa pentru consumul echipajului provine din facilitatile de reprocesare a apei de pe Puntea I si din rezervele de apa de pe Puntea III.
-tot pe Puntea II se afla si zone libere pentru recreere, spatii de intalnire si stocare a pieselor de schimb.
-intre zona de recreere si zona de preparare a hranei se afla un bloc electronic, cu o serie de componente incluzand si giroscoapele de control a momentului (CMG).
-in centrul podelei este un chepeg presurizat care da inspre adapostul de radiatie de pe Puntea III, si sas-uri non-presurizate care permit accesul catre zonele de depozitare a echipamentelor de pe Puntea III.

Puntea III:
-inaltimea acestui compartiment este de 3.1 m in loc de 2.1 m din cauza prezentei adapostului de radiatie.
-adapostul de radiatie este format dintr-un compartiment interior cu un diametru de 3.1 m si inalt de 2.1 m. El serveste si pe post de adapost de urgenta in caz de depresurizare pentru perioade scurte de timp. Volumul total este de 17 m^3 cu aproximativ 1.7 m^3 disponibile per membru al echipajului. El urma sa fie folosit in caz de trecere prin centurile Van Allen, in cazul unei furtuni solare sau in timpul aprinderii motorului din treapta PM-3. Pentru ca adapostul putea fi ocupat pentru perioade lungi de timp si in timpul aprinderilor, era necesar ca adapostul sa aibe rezerve de urgenta de mancare, apa si igiena personala, precum si rezerve separate de aer si circuite de control atmosferic. Fiecare membru al echipajului are propriul sau compartiment de stocare cu provizii si costume presurizate (astfel ca membrii ai echipajului pot iesi si repara defectiunile).
-Ecranarea de radiatie este asigurata de un ecran de 0.5 cm de apa care serveste si pe post de depozitare a deseurilor si a hranei. Majoritatea proviziilor initiale de hrana pentru cele 500 de zile sunt si ele stocate aici, cu o densitate de 137 kg/m^2. Panourile podelei pot fi indepartate pentru a ajunge la rezervele de hrana din depozitul de echipamente.
-depozitul de echipamente de pe aceasta punte include o zona care se extinde 0.6 m, dinspre interior spre exterior si in jurul periferiei. In aceasta zona de depozitare sunt trei containere de apa cu diametrul de 0.6 m, precum si spatii libere ce pot fi utilizate in cazul unor misiuni care depasesc durata de 1000 zile. Tot aici sunt situate si echipamentele de control a mediului, unitati de control a atmosferei si reactoare Bosch pentru purificare atmosferica

Puntea IV
-cuprinde laboratoarele asociate programului experimental, echipamentele de control a parametrilor experimentali si instalatiile de procesare si stocare a datelor.
-in total sunt 5 laboratoare, respectiv pentru optica, geofizica, electronica, biostiinte si informatii stiintifice. De la laboratorul de optica se extinde o ecluza cu diametrul de 30 de inch pentru recuperarea si schimbarea rolelor de film de pe exteriorul navei.
-localizata central pe aceasta punte sunt sas-urile care duc inspre adapostul de radiatie, si, pe partea opusa, ecluzele care duc inspre MEM, vehiculele logistice, si sas-urile pentru ectivitati extra-vehiculare.
-sub podeaua acestei punti sunt localizate unitatile de manevrare extra-vehiculare folosite in combinatie cu costumele spatiale pentru a realiza operatiuni in afara navei.

SUS: Diagrama Puntii III; JOS: Diagrama Puntii IV

 

Modulul de Excursie Martiana

Sincer ar fi foaaarte multe de spus despre acest sistem. Atat de multe incat nu am sa-l prezint decat succint aici, in speranta ca voi ajunge sa public un articol separat despre el (desi la ce backlog am, nu cred ca va fi foarte curand, motiv pentru care imi cer scuze de pe-acum). Pentru curiosii care vor sa afle mai mult pana atunci, le recomand pagina dedicata de pe projectrho.

In esenta acest sistem nu era proiectat de catre Boeing ci adaptat de la un concept realizat de North American Rockwell. Acesta este un trend pe care il regasim si in ziua de astazi, diferite studii refolosind componente de hardware care au fost deja definite in alte studii de referinta (un alt exemplu mai modern ar fi nave de transport martian care folosesc module gonflabile Transhab, ele avand deja parametrii definiti).Astfel se realizeaza o economie de timp de proiectare.

Conceptul insusi a aparut ca urmare a dezvaluirilor sondei Mariner 4 referitoare la atmosfera martiana (mai precis, ca aceasta are o densitate medie a atmosferei de numai 6 hPa, fata de cele 10-12 crezute pana atunci). Aceasta revelatie a facut multe dintre landerele generice precedente (cum ar fi landerul Lockheed si Aeronutronic MEM) sa fie perimate. Ele nu ar fi functionat.

Ca atare, Rockewell a fost contractata sa realizeze un nou proiect de vehicul de amartizare. Acestia au facut o treaba excelenta, realizand un vehicul modular, cu doua trepte, similar modulului Apollo. Modularitatea sa ii permitea sa fie reproiectat in functie de fiecare arhitectura de misiune in parte. Spre exemplu, modulul generic avea masa de 49 de tone si putea transporta intre 2 si 4 oameni, dar pentru IMIS, Boeing a ales o configuratie pentru 3 oameni si 30 de zile sedere, de 43 de tone.

Treapta inferioara folosea combustibil solid (si inca unul inedit, si anume beriliu, care putea dubla si ca scut neutronic in spatiu in caz de urgenta) pentru aterizare. O buna parte din viteza ar fi fost pierduta prin franare aerodinamica, motiv pentru care nava refolosea forma de lacrima a capsulelor spatiale standard, asigurrand astfel o enorma stabilitate in timpul amartizarii.

La finalul celor 30 de zile, treapta superioara s-ar fi desprinz de “baza” si ar fi purtat astronautii si cele 5 tone de mostre pe orbita, pentru a fi transferate in nava aflata in asteptare.

Rockewell MEM, in configuratia IMIS

 

Concluziile autorului

Off, draga Boeing… ce-ai fost si ce-ai ajuns…

Studiul de mai sus este cel mai bine inchegat din era eroica a explorarii spatiale. Nivelul de detaliere este mult superior celor din studiile UMPIRE si EMPIRE (si, imi este teama ca nu-i pot face suficienta dreptate intr-un singur articol). Este primul studiu care abordeaza concret teme sensibile care au fost relativ putin explorate anterior, precum nivelul de radiatie primit de la motoare, de la raze cosmice sau de la centurile Van Allen, sistemele de mentinere a vietii, proviziile, si singurul care prezinta o abordare concreta (chiar daca usor periculoasa) pentru a realiza o amartizare si o sedere decenta pe suprafata planetei rosii. Are de toate!

Din pacate pentru noi, la momentul sau, nu a avut un lucru crucial: bani. Istoricii spatiali au denumit proiectul IMIS “batalia de la Waterloo” a NASA, in sensul ca, desi este extrem de bine pus la punct, el reprezinta momentul maxim de disjunctie intre ceea ce NASA credea ca ar trebui sa primeasca si ceea ce a primit in realitate.

Poate suna ciudat sa spunem asta, dat fiind ca rapoartele au fost publicate in ajunul primei aselenizari. Pentru cei ce se indoiesc, trebuie sa clarific: Apollo a fost un accident al istoriei. Era, in primul rand, un semnal catre sovietici si catre inreaga lume. Ca sa-l citez pe Phil Metzger: “I think governments in the Cold War got the idea that the purpose of space is primarily geopolitical signaling both to allies and to adversaries, so they want big flashy programs rather than long term incremental progress toward some goal that they don’t understand” (o sesizare la fel de adevarata si in ziua de astazi, din pacate).
Multi istorici cred ca Apollo ar fi fost probabil anulat prin preajma anului 1967 daca Kennedy ar fi trait si ar fi prins un al doilea mandat. De altfel, data de 1967 era cea initial inaintata pentru prima aselenizare (un termen de 7 ani; mult prea optimist). Deja, in 1965, era evident ca rusii ramaneau in urma si ca pericolul umilirii geopolitice trecuse (la urma urmei, exploziile gigantice ale rachetei N-1 erau dovada clara ca programul spatial sovietic era in degringolada la acel moment).

Dar iata ca istoria a jucat o festa interesant, curmandu-i viata presedintelui american si aducand la putere un vicepresedinte fara program de guvernare propriu, aprinzand, in acelasi timp, un val imens de simpatie si sprijin politic care a permis agentiei spatiale (la acea vreme condusa efectiv de ingineri si vizionari ambitiosi si indrazneti) sa-si duca pana la capat misiunea initiala, pe fondul unor critici mult diminuate.

Cu Apollo 9 urmand sa intre in palmares, si cu IMIS pe hartie, NASA spera sa-si cumpere un viitor luminos. La urma urmei, spre deosebire de conceptele prezentate in cadrul EMPIRE, motorul nuclear al IMIS nu era unul de hartie, ci unul cat se poate de real. NERVA XE, prototipul motorului Alpha ce urma a fi folosit de IMIS era in curs de asamblare si urma sa-si inceapa in acelasi an campania de teste. Rover se dovedise un succes, si NASA nu trebuia decat sa incerce sa mentina inertia momentului.

Din pacate, alegerile pentru Congres si viata politica au respins categoric planurile NASA. Respingerea a fost atat de puternica incat in decada 1970-1980 nu vom mai gasi nici un studiu pentru misiuni martiene cu echipaj uman. Pur si simplu, nici unul nu a mai fost contractat. Nevoia se evaporase, odata cu ambitia agentiei care s-a vazut fortata sa se intoarca pe dos si sa incerce, chinuit, sa obtina un avion orbital (viitoarea Space Shuttle).

Dar impactul studiului IMIS s-a propagat in timp. Maturitatea conceptului si faptul ca era ultima arhitectura studiata a facut ca, in anii 80, cand gustul pentru misiuni martiene a capatat din nou amploare, el sa fie folosit ca si referinta de baza pentru viitoarele arhitecturi (cel mai pregnant in Raportul de 90 de zile prezentat Congresului in 1989).

Tehnologic vorbind, IMIS era o solutie de forta bruta, urmarind performante maxime credibile cu pretul unui cost final greu de inghitit. Comparativ cu arhitecturile moderne, care mai toate folosesc resurse matiene indigene (ISRU, adica productie de combustibil pe Marte folosind atmosfera martiana ca sursa de materii prime), e non optim. O arhitectura bazata pe un stil Apollo, cu o nava non-reutilizabila care se imputineaza pe masura ce-si realizeaza misiunea, abandonand si trepte foarte scumpe (si care iti bronzeaza organele interne daca te apropii prea mult de ele odata ce au fost folosite). De asemenea, comparativ cu vehicule moderne (cum ar fi Starship) IMIS nu poate fi realimentata pe orbita, iar munca de dezvoltare necesara pentru a realiza rezervoare care sa nu piarda hidrogen e probabil mult subestimata.

Dar, la vremea cand a aparut, a fost prima arhitectura de misiune cu adevarat plauzibila, si felxibilitatea sa extraordinara dpdv al maselor, experimentelor si orbitelor ma face sa inclin catre ideea ca, daca NASA nu ar fi fost gatuita, acestea sau un concept foarte similar ar fi fost arhitectura de baza utilizata pentru explorarea martiana.

In final, va voi lasa niste date tehnica si ilustrate dragute. Sa ne auzim cu bine!

Propulsie: nuclear-termica
Franare martiana: propulsiva
Tip de misiune: opozitie/conjunctie/swingby
Tip de transport: integrat / all-up (adica o singura nava purta tot echipamentul misiunii)
An lansare: 1985
Echipaj: 6
Incarcatura utila martiana: 5 t
Timp de zbor inspre Marte: 200 zile
Timp de sedere pe suprafata: 30 zile
Timp de intoarcere: 230 zile
Timp total misiune: 460 zile
Masa orbitala: 1226 tone standard
Lungime: 177 metrii standard
Raport masic: 0.71 (adica 71% din masa vehiculului era masa de reactie)
Masa per membru de echipaj: 204 tone
Sarcina utila necesara lansatorului: 249 tone
Numar de lansari necesare asamblarii orbitale: 6
Vehicul de lansare: Saturn V-25(S)U
Cost: $30 miliarde (1968)
Delta-V: 13,400 m/sec

Artist: Robert McCall, imagini adunate de James Vaughan

Marian Dumitriu (Checkmate)

Surse:
1. https://spaceflighthistory.blogspot.com/2015/06/empire-building-ford-aeronutronics-1963.html
2. http://www.projectrho.com/public_html/rocket/realdesigns.php#id–EMPIRE_(Aeronutronic)
3. https://history.nasa.gov/monograph21.pdf
4. https://archive.org/details/nasa_techdoc_19640000998
5. http://www.astronautix.com/e/empireaeronutronic.html

6. http://www.astronautix.com/i/imis1968.html
7. http://www.astronautix.com/n/nerva-1.html
8. http://www.astronautix.com/n/nervaalphaengine.html
9. http://www.astronautix.com/n/nervagammaengine.html
10. http://www.projectrho.com/public_html/rocket/realdesigns.php#id–Boeing_IMIS
11. http://www.projectrho.com/public_html/rocket/excursion.php#rockwellmem
12. https://ntrs.nasa.gov/search.jsp?R=19680009769
13. https://ntrs.nasa.gov/citations/19680009779

The post Stele verzi – pe umerii atomului: Boeing IMIS appeared first on Romania Military.

Articol original

Stele verzi – pe umerii atomului: EMPIRE GD

EMPIRE – General Dynamics

Acesta este studiul produs de catre General Dynamics in timpul programului de cercetare EMPIRE. Dupa cum am mentionat anterior, GD primise sarcina de a studia misiuni exclusiv orbitale, fara traiectorii de survol si asistente multiple.

Studiul GD este, comparativ cu partenerii sai de la Lockheed si Aeronutronic, mult mai exhaustiv. De fapt, este mai mare decat ambele la un loc, si asta datorita sprijinului si entuziasmului echipei de la GD, in special a directorului de departament Krafft Ehricke, unul dintre colaboratorii apropiati ai lui W. Von Braum si un mare proponent al zborurilor cu echipaj uman.

Fereastra de lansare pe care se bazeaza raportul este intervalul 1973-1975. Echipajul era de 8 oameni, iar durata de sedere pe orbita era intre 30 si 50 de zile (considerata a fi suficienta pentru a permite o explorare limitata a zonei initiale din jurul punctului de amartizare). Durata totala a misiunii era de 400-450 zile incluzand perioada de captura orbitala in jurul lui Marte.
 

Configuratii

In fapt, trebuie sa mentionam ca raportul ultra-detaliat explora nu una, ci patru configuratii diferite de nava, ele insele fiind cernute dintr-o multime mai larga de 30 de design-uri initiale. Aceasta analiza preliminara a dus la concluzia ca masa totala la plecare se situa in intervalul 1200-1400 tone, cu o sarcina utila in timpul misiunii de 45 de tone (aici includem practic echipamentele autonome care urmau sa amartizeze).

Cele patru configuratii erau, in fapt, menite a realiza aceeasi misiune, diferenta dintre misiuni fiind tipul de motor NTR disponibil (motoare KIWI/RIFT vs motoare avansate preconizate/NERVA) si vehiculul de lansare (Saturn C-5 vs Nova). Pe scurt:

C-22: lunga de 106 metri, si asamblata pe orbita folosind componente lansate cu rachete super-grele Nova. Nava ar fi necesitat doua lansari de cate 450 tone (practic un vehicul de lansare absolut gigantic). Putea folosi atat motoare RIFT cat si motoarele preconizate NERVA.
Date tehnice:

  • Lungime: 106 m
  • Diametru: 21 m
  • Tractiune: 1780000 N
  • Masa totala: 900 tone

C-23: lunga de 95 de metri, asamblata folosind componente lansate cu Nova. Diametrul era de 23 de metri, si folosea motoare nucleo-termice avansate. Daca era lansata folosind Saturn V, ar fi necesitat opt lansari de cate 120 de tone.

  • Lungime: 95 m
  • Diametru: 23 m
  • Tractiune: 1780000 N
  • Masa totala: 960 tone

C-26: lunga de 162 metri, asamblata folosind exclusiv componente lansate cu Saturn V. Prezentata in raport in doua variante. Diametrul era de 10 metri, si folosea motoare RIFT sau NERVA. Masa variabila in functie de misiune.

  • Lungime: 162 m
  • Diametru: 10 m
  • Tractiune: 1820000 N (NERVA) / 550000 N (KIWI/RIFT)

C-28: ultima configuratie. La fel ca si C-26, era gandita cu doua posibilitati de design. Lansatorul era, din nou, Saturn V, si masa era, iarasi, variabila in functie de profilul misiunii. Motoarele erau NERVA avansate.

  • Lungime: 174 m
  • Diametru: 10 m
  • Tractiune: 1820000 N

Componenta propulsiva a navelor, in functie de varianta folosita. Abrevierea C (C-22, C-23, etc) vine de la “Class” (Clasa). Ambele variante de C-28 sunt prezente. Absente sunt variantele clasei C- 26

 

Profilul misiunii

Comparativ cu misiunile propuse in aceiasi ani, conceptul General Dynamics avea cateva particularitati:

  • omisiunea ar fi constat din DOUA vehicule cu mase relativ echivalente. Teoretic, ambele vehicule ar fi apartinut aceleiasi clase (ambele C-28, C-22, etc), dar, studiul mentioneaza ca este posbila folosirea unor arhitecturi diferite pentru vehicule.
  • explorarea martiana s-ar fi realizat de pe orbita, folosind vehicule teleghidate robotice amartizate controlate de echipajul de pe nava.

Asadar, ideea de a imparti masa unei misiuni intre doua sau mai multe vehicule nu este ceva caracteristic planurilor din ani 90, ci a reprezentat un concept mult mai vechi (si chiar a fost unul dintre conceptele propuse initial pentru programul Apollo). Diferenta majora este ca, acolo unde arhitecturile DRM si Mars Direct trimiteau cele doua vehicule sacadat, in doua ferestre consecutive, General Dynamics propunea trimiterea lor ca si convoi, in aceeasi fereastra orbitala. Pe rand, avem:
Nava cu echipaj (Crew Mission Vehicle), cu rol de:

  • transport echipaj
  • navigatie
  • procesarea si stocarea datelor
  • comunicatii
  • control pentru vehicule auxiliare
  • tranportarea Vehiculului de Reintrare Terestra (Earth Entry Vehicle – EEM)

Nava cargo, care avea misiunea de a:

  • transporta vehiculele auxiliare
  • transporta componente de rezerva
  • transporta combustibil suplimentar
  • asistenta navigationala
  • transport auxiliar de rezerva pentru echipaj
  • transporta un EEM suplimentar

Nava de echipaj cuprindea, printre altele, si un vehicul de dimensiuni mici folosit pentru transportul de la o nava la alta (vehiculele fiind relativ imobile unul fata de celalalt pe parcursul zborului in convoi; aceeasi traiectorie, aceeasi fereastra, acelasi delta-V).

Sistemele de mentinere a vietii au fost principalul punct focal al studiului, nu numai pentru ca trebuiau sa indeplineasca sarcina dificila de a tine 8 oameni in viata timp de 450 de zile, ci si fiindca configuratia folosita avea un impact asupra vehiculului. Astfel, trebuia asigurat un anumit nivel de gravitatie artificiala (centrifugala). Spre deosebire de conceptele LM si Aeronutronic, GD a decis ca este mai oportuna folosirea designului de tip “tumbling pidgeon ” (in traducere aproximativa, “porumbel in rostogolire”). Adica, in locul folosirii unei centrifuge pe brate extensibile care sa fie atasata de fuselajul navei, habitatul va fi fix si intreaga nava se va rostogoli.

Suna ciudata, dar e un concept foarte des intalnit in misiuni de lunga durata, pentru ca nu necesita piese in miscare sau componente de conectare care se pot defecta in timpul misiunii (cu rezultate nefericite pentru oasele echipajului). De asemenea, daca este bine implementat, o nava de tip “porumbel” poate fi mai usoara decat una cu centrifuga.

In cazul de fata, GD a argumentat ca utilizarea unor motoare nucleare implica folosirea inevitabila a unui scut de radiatie. Si ca pentru a proteja echipajul de radiatia neutronica emisa in timpul functionarii (si a cele gamma emise dupa ardere) era preferabil ca habitatul sa fie situat cat mai departe de motor. De asemenea, conul de umbra al scutului de radiatie putea fi cu atat mai subtire cu cat habitatul era mai departe, permitand folosirea unui scut de diametru mai mic, si deci, mai usor.

Rezulta, asadar, o nava lunguiata, cu motoarele la un capat, habitatul la celalalt capat si rezervoarele de masa de reactie intre cele doua capete. Ori, o astfel de nava se preteaza la generare de gravitatie centrifugala prin tumbe.

Imagine schematica ilustrand functionarea scutului de radiatie. Desi nu este din studiul GD, nava era similara ca si forma.

 

Componentele navei – Modulul de comanda

Are un diametru de 10 metri si doua punti etajate. Puntea superioara cuprinde Statia de Comanda, cu trei statii de lucru pentru echipaj. Puntea inferioara cuprinde spatiul de dormit.
Modulul are protectie suplimentara, actiunand astfel ca si adapost pentru furtuni solare. In podeaua puntii inferioare este si chepegul de andocare pentru EEM, iar plafonul puntii superioare este unde se realizeaza conexiunea cu restul habitatului.

Ecranarea suplimentara era prevazuta initial sa fie formata dintr-un strat de apa, dar studiul a relevat ca era imposibila transportarea unei cantitati atat de mari (cand vorbim de protectie, ne referim la reducerea dozei de radiatie pana la 0.01 Gray/zi).

Pentru a rezolva aceasta problema, apa era suplimentata cu polietilena borificata sau hidrazina monometilica (MMH). Intr-un final,MMH era solutia recomandata pentru ca era mai usor de ejectat in cazul unei urgenta si pentru ca putea fi folosita si pe post de combustibil suplimentar (cu difluorura de oxigen pe post de oxidant; OF2). Ba chiar, are si un impuls specific foarte bun (405 secunde, corespunzand unei viteze de evacuare de 4000 m/secunda) si e hipergolic, eliminand problemele de aprindere ale motoarelor. Astfel, putea fi folosita pentru vehiculele auxiliare, si, suplimentar, putea actiona ca masa de reactie.

Pentru ca, la o nava spatiala, conteaza fiecare gram.

Marea hiba era ca OF2 este o substanta ingrozitor de coroziva. Atat de coroziva incat poate oxida si xenonul! Realizarea unui rezervor care sa o poata inmagazina in siguranta nu e o sarcina usoara.

Diagrama modulului de comanda

 

Componentele navei – Modulul habitat

Are masa totala de 39, 700 kg. In figura prezentata, prova navei este inspre directia “jos” a astronautilor, iar pupa sus, inspre motoare. Asta din cauza rotatiei necesare pentru efectul centrifugal. Gravitatia este de 0.25 G (un sfert din gravitatia terestra).

Partea centrala a habitatului contine EEM-ul, Modulul de Comanda si Modulul Intern de Misiune (IMM). Acesta din urma cuprinde sistemul de mentinere a vietii [notat cu A], stocurile de hrana [B] si atelierul de reparatii [C].

De asemenea, in jurul acestei coloane centrale sunt atasate patru module externe de misiune, cu o incarcatura care depinde de specificul misiunii.

Fiindca adiacent motoarelor nucleare era si un reactor SNAP-8 (pe care l-am intalnit si la conceptul Aeronutronic) coloana trebuia sa fie relativ inalta pentru a asigura distanta fata de acesta. In cazul de fata, inaltimea era de 23 metri.

Studiul dezbate (din nou….) doua posibilitati de realizare a habitatului: Integrat si Modular. Arhitectura modulara ar avea o masa mai mare, insa era mult mai flexibila. Spre exemplu, un design integrat nu poate fi adus la zi prin inlocuirea unor module si nu ar permite ejectarea modulelor in caz de urgenta. Asadar, arhitectura aleasa a fost cea modulara.

Modulul de habitat A se observa “taxiurile spatiale” menite a fi folosite pentru reparatii si lucrari exterioare in timpul tranzitului, cat si pentru a asigura legatura intre cele doua nave din convoi. Un aspect interesant este ca diagrama de mai sus inverseaza pozitia dormitorului cu cea a centrului de comanda. Nu stim daca este o diagrama mai timpurie sau o greseala din partea autorilor.

 

Componentele navei – EEM

Foarte similar cu capsula de reintrare Apollo, putea fi folosita ca si centru secundar de comanda. Spre deosebire de acesta, volumul interior era mai mare, pentru a acomoda cei opt astronauti. Propulsia era asigurata de un motor LH/LOX.

Studiul mentioneaza o posibilitate interesanta (si usor tulburatoare): teoretic, dupa terminarea misiunii, sistemul de mentinere a vietii cu bucla ecologica inchisa putea fi ejectat, iar EEM se putea conecta direct la restul navei. Asta ar fi redus mult spatiul locuibil (vorbim de opt oameni care trebuie sa traiasca jumatate de an intr-un spatiu de marimea unei sufragerii.

Banuiala mea este ca autorii o ofereau ca si posibilitate numai in cazul unei urgente. De asemenea, sa nu uitam ca, teoretic, aveau o a doua nava la dispozitie.

Vedere in diagrama a EEM-ului

 

Componentele navei – Sistemul de amartizare

Dupa cum am mentionat, echipajul ramanea pe orbita, iar explorarea se realiza prin tele-robotica. Astfel, sarcina utila a misiunii ar fi constat dintr-un Lander Martian (bazat pe arhitectura sondei Surveyor de la JPL, si cuprinzand un sistem de reintoarcere cu mostre martiene), sonde de impact (bazate pe arhitectura sondelor Ranger) pentru investigarea satelitilor Deimos si Phobos si un orbiter pentru masuratori de mediu.

Una dintre sugestii era de modificare a Landerului prin inlocuirea sistemului de intoarcere a mostrelor cu unul cu echipaj uman. Acesta ar fi putut transporta doi astronauti, care ar fi putut petrece o saptamana pe suprafata planetei Marte.

Dar asta era o idee oarecum nefericita, din cauza lander-ului. Vedeti, in 1962, se estima ca presiunea atmosferica a planetei marte era cam 25% din cea terestra. Ca atare, landerul era preconizat a folosi un tip de parasuta semi-rigida anulara pentru a incetini.

In clipa in care altitudinea se micsora, parasuta se desprindea, iar landerul ateriza propulsiv.

O a doua mare problema esta ca naveta ar fi folosit dimetil-hidrazina nesimetrica (UDMH) si triflourura de clor ca si combustibili. UDMH-ul este denumit si “cancer exploziv”, pentru ca este extrem de volatil, toxic si instabil.

Mai rau e ca si triflourura era incredibil de periculoasa, fiind extrem de coroziva pentru orice fel de fibra, lemn, nisip, azbest si oameni. De asemenea, exista un risc major de explozie in cazul rezervoarelor metalice (care pot forma un strat protector la suprafata, dar nu si in cazul unei decompresii explozive).

Date tehnice:

  • Impuls specific: 300 secunde
  • Combustibil: UDMH
  • Oxidant: Triflourura de clor
  • Suprafata parasutei: 836 metri patrati
  • Masa combustibil: 1630 kg
  • Masa oxidant: 4940 kg
  • Masa amartizare: 9980 kg
  • Masa decolare: 8840 kg
  • Sarcina utila la intoarcere pe orbita: 1360 kg
  • Masa abandonata pe Marte: 1540 kg

Vehiculul in timpul amartizarii (sus) si decolarii (jos)

 

Opinia autorului

Studiul de la General Dynamics este cel mai lung dintre cele trei studii EMPIRE, dar asta nu inseamna ca este enorm de detaliat. Mai degraba, as spune ca, spre depsebire de Lockheed si Aeronutronic, echipa lui Krafft Ehricke a profitat de ocazia studiului pentru a se lansa intr-un fel de dezbatere referitoare la configuratia navei.

Desi arhitecturile de misiune propuse foloseau propulsia nucleara, aceasta nu era extrem de detaliata, ci doar folosea solutii off-the-shelf. Similar, desi misiunea ar fi avut ocazia sa propuna o traiectorie anume, raportul lasa vag tipul exact de traiectorie necesara. Mai rau, este ca nu prezinta valori pentru delta-V-ul necesar atingerii obiectivelor misiunii.

E dificil de spus daca echipa a ales sa faca asta pentru simplul motiv ca pana atunci nu se mai cerusera vreodata rapoarte de genul acesta (desi teoreticieni individuali, cum a fost Von Braum, propusesera deja arhitecturi de misiune, acestea erau doar eforturi de popularizare si munca voluntara a unui grup restrans de oameni, nu un proiect formalizat printr-un contract guvernamental cum era EMPIRE). Chiar si asa, efortul GD pare sa fi pierdut din vedere scopul studiului (care era de a prezenta plaja operationala a motoarelor, nu de a prezenta modul in care se ajunge la arhitectura unei nave).

In mod interesant, GD a participat si la un studiu din 1964, denumit UMPIRE. Aici, insa, a preferat sa incredinteze proiectul unei alte echipe, condusa de R.D. Austin. Studiul acela a fost, spre deosebire de EMPIRE, un succes, si s-a lasat cu un concept de nava foarte interesant (dar pe care nu intentionez sa-l prezint prea curand, fiindca arhitectura e destul de generica si similara cu Boeing IMS-ul din articolele viitoare). Daca Ehricke dorea sa sublinieze vreun aspect anume al procesului de studiere a sistemelor spatiale, trebuie sa spun ca, oricare ar fi fost acest aspect (si poate era usor de realizat pentru oamenii timpului) el e total pierdut pentru mine, personal, ca si cititor, 58 de ani mai tarziu.

Daca este, totusi, sa judecam drept, studiul prezenta si niste particularitati interesante. Spre exemplu, ideea de a realiza explorarea la distanta, de pe orbita, prin roboti teleghidati, era inedita la acea vreme, si, dupa cunostiintele mele, nu a mai fost propusa la alte misiuni similare. Pentru noi, suna ciudat sa calatoresti pana in pragul planetei Marte, dar sa nu pasesti pe suprafata. Insa, noi astazi putem realiza vehicule cu multa autonomie pentru explorare. La acea vreme, robotica autonoma era un domeniu extrem de primitiv, si atunici folosirea oamenilor pentru comanda si control are sens. Mai ales ca distanta Pamant-Marte face ca orice incercare de control direct de la NASA sa fie lipsita de sens (latenta datorata luminii fiind intre 8 minute si o ora).

Landerul in sine era extrem de putin detaliat (desi apare destul de proeminent in imaginile folosite de NASA) si, dupa cum am mentionat, nu ar fi functionat. Estimarile initiale pentru presiunea atmosferica a planetei erau mult eronate (25% vs 0.7% in realitate) iar sisteme de franare bazate pe parasute sau dispozitive aerodinamice nu ar fi functionat. Asta explica si raportul maselor extrem de optimist (o atmosfera mai densa iti permite sa economisesti combustibil la franare).

Ideea combustibililor hipergolici e nastrusnica, dar pare a fi, la fel ca si restul landerului, mai degraba un gand de pe urma. Mi-i se pare extrem de indoielnic ca NASA ar fi fost de acord cu inmagazinarea unei cantitati mari de substante ultra-volatile langa habitatul astronautilor, vreme de 15 luni.

Motoarele NTR erau, la fel ca si in cazul Aeronutronic, cu performante optimiste (tractiune enorma pentru greutate prea mica). Meritul GD este, totusi, ca nu s-a bazat exclusiv pe ele, ci a propus si arhitecturi de misiuni bazate pe reactoarele RIFT (adica KIWI). Desi, trebuie spus ca folosirea acestora limita mult capacitatile vehiculelor.

Daca vi se par inspaimantator de mari aceste nave comaprativ cu misiunile moderne, ei bine, e fiindca misiunile moderne folosesc resurse in-situ (adica la fata locului, concept abreviat ISRU) pentru a produce oxigen si a combustibil. Asta le permite sa planifice misiuni martiene cu masa orbitala de numai 200-300 tone. Fara ISRU, navele de explorare seamana mai degraba cu cele din EMPIRE: lungi de zeci de metrii, si grele de 900-1400 tone.

Sus: cele patru configuratii finale de nave; Jos: Ilustrarea sistemului tip convoi

In mod incredibil, istoricul aerospatiala Scott Lowther a reusit sa descopere prin FOA, unele dintre schitele tehnice din proiect

Spuneti ce doriti despre proiect, dar GD nu a precupetit cu angajarea artistilor conceptuali

  

 

Sa ne vedem anul acesta cu multa voiosie!

Marian Dumitriu (Checkmate)

Surse:
1. https://spaceflighthistory.blogspot.com/2015/06/empire-building-ford-aeronutronics-1963.html
2. http://www.projectrho.com/public_html/rocket/realdesigns.php#id–EMPIRE_(Aeronutronic)
3. https://history.nasa.gov/monograph21.pdf
4. https://archive.org/details/nasa_techdoc_19640000998
5. http://www.astronautix.com/e/empireaeronutronic.html

The post Stele verzi – pe umerii atomului: EMPIRE GD appeared first on Romania Military.

Articol original

Stele verzi – Rover, ‘dulaul’ astronuclear (episodul 12)

XE-PRIME

Testat incepand cu 4 Decembrie 1968, si continuand pana pe 11 Septembrie 1969, XE-PRIME a fost ultimul model de motor testat la NERVA, reusind 24 de aprinderi. Cu o putere de 1140 MWth, presiune in camera de ardere de 3861 kPa si temperatura de 2272 K, motorul reprezenta prima instanta in care promisiunile motoarelor nucleare erau indeplinite. El era construit pe calapodul unui miez A5.

Prototipul a fost folosit pentru un program de teste care a durat un an, avand 8 obiective principale si 58 de obiective secundare. Din brevitate, nu le vom enumera pe toate, doar vom spune ca, spre deosebire de celelalte prototipuri, acesta nu era un stand de testari.

El era similar cu modelele A3, A5 si A6 anterioare, dar spre deosebire de ele, componentele erau adunate la un loc si conectate intr-o configuratie de zbor. Modelele anterioare, spre exemplu, foloseau o linie de hidrogen lichid separata, parte a facilitatilor de testare. O similaritate mult mai mare era cu EST. La fel ca si acel reactor, XE-PRIME avea un sistem de „hot bleed” (in traducere aproximativa „purjare fierbinte”) care actiona turbopompa. Masa de reactie era, evident, tot hidrogen lichid.

In arhitectura ei adanc cuplata, XE-PRIME era practic format din doua componente majore (putem spune ca era modular). Primul dintre aceste module era cel inferior, care continea vasul de presiune, miezul, duza, elementele structurale inferioare, scutul de radiatie extern, actuatoarele tamburilor si instrumentatia aferenta. Al doilea era modului superior, alcatuit din structura cu zabrele de sustinere, liniile de alimentare, valvele, ansamblul turbopompei si instrumentatia de masura. Motivul pentru aceasta arhitectura era pentru a permite reparatii rapide. Astfel, in cazul in care modulul superior suferea o defectiune majora la una dintre componentele sale, el putea fi demontat si inlocuit de la distanta.Intr-adevar, toate liniile de alimentare cu hidrogen si curent electric care treceau din modulul superior in cel inferior puteau fi actionate electronic.

Tranzitia de la motor la standul de teste se facea printr-un sistem structural special, denumit adaptorul de stand de teste (Test Stand Adaptor). La fel ca si standul de teste in sine, el fusese construit repede, din elemente nefolosite la alte teste. Acest sistem continea conectarile dezactivabile de la distanta, precum si cablurile de date si comanda care conectau motorul cu centrele de control. De asemenea, continea si valva de oprire principala si instrumentarul ei.

La cei 1140 MWth ai sai, motorul avea tractiunea de 246663 N, la temperatura de 2272 K, presiunea de 3861 kPa si cu debitul de 31,8 kg/sec prin duza, respectiv 35.8 kg/sec total. Astfel, 0.4536 kg/sec erau deviati si folosit pentru antrenarea turbopompei si racirea sistemului. Masa motorului era de 18144 kg, si intreg sistemul era lung de 6.9 m , cu un diametru de 2.59 m (incluzand duza de evacuare).

Aceasta duza era de forma convergent-divergenta, cu un unghi de convergenta de 45 de grade, divergenta de 17.5 grade, si raport de expansiune de 10:1. Ea era compusa dintr-un manunchi de tuburi de otel inoxidabil care se sprijineau de o fusta din acelasi material. Tuburile erau inserate in canale special realizate in fusta. Hidrogenul deviat de la duza interioara patrundea printr-o intrare anulara si era folosit pentru a raci un circuit separat menit a deservi piroanele ce atasau vasul de duza, continuand apoi catre turbopompa. Intrarea acestui hidrogen era printr-o valva de purjare fierbinte, la fel ca la EST, situata in sectiunea convergenta.

Sistemul de control al XE-PRIME putea folosi o serie de moduri de control automat, precum si un numar de moduri de control manual. Scopul acestor multiple moduri era de a obtine date pentru o modelare mai buna a unor eventuale motoare viitoare (un reactor spatial nu ar fi folosit atatea moduri). Tamburii reglau puterea motorului, in timp ce un sistem denumit TPCV (abreviat de la Turbine Power Control Valve, in traducere Valva de Control a Turbinei) regla fluxul de gaze catre turbopompa.Teoretic, cele doua erau independente, cu scopul de a obtine conditiile de presiune si temperatura dorite. Insa, exitau interactiuni la nivel de reactivitate si activitate neutronica ce le faceau interdependente. Modul automat regla aceste interactiuni pentru a obtine parametrii dorit. Modul manual era gandit sa obtina deviatii de la acesti parametrii pentru a studia comportamentul sistemului in diferite situatii ipotetice.

Trebuie sa spunem si cateva cuvinte despre standul de teste. Demunit ETS-1 („Experimental Test Stand”, in traducere stand de teste experimental), el era de fapt aceeasi Maria cu alta palarie. Adica, el era un stand contruit pe locul Test Cell C, prin adaugarea unui sistem de racire de dimensiuni mari si a unei structuri de separare atmosferica. Si a insemna aproape jumatate din bugetul ramas NERVA. Standul si cladirea erau construite din aluminiu pur, care era transparent la radiatie neutronica (minimizand astfel radioactivarea). De asemenea, era prevazut un sistem de racire cu apa. Radiatia, in general, strica structuri complexe, cum ar fi aranjamentele cristaline, proteinele sau alte tipuri de materiale organice. Ca atare, orice garnitura trebuia realizata din metal (in general tot alumniu), fiindca o garnitura de cauciuc s-ar fi transformat repede intr-o masa amorfa de polimeri topiti.

De asmenea, au existat probleme la tevile de evacuare, care trebuiau sa suporte temperaturi ridicate pentru o perioada mai lunga de timp decat la un test de motor chimic. Munca de constructie a acestora a implicat 54 de tone de otel, 3.9 tone de sarma de sudura si 10.5 km de linii de sudura. In total, cele 234 de tevi trebuiau sa transport 11.000 de tone de apa de racire in timpul unui test. Lucrarile au fost realizate de catre Allegheny Technologies si Air Preheater Company. Spre deosebire de toate celelalte teste de NTR-uri, XE-PRIME era orientat in jos, ca la o lansare. Structura de separare atmosferica permitea folosirea unei presiuni scazute pentru test, din nou pentru a imita conditiile de functionare reale. Era insa, imposibila obtinerea unui vid, asadar, presiunea folosita era de 6.9 kPa, echivalentul presiunii atmosferice la altitudinea de 18288 metrii.

Am spus mai devreme ca programul de teste a insemna 24 de aprinderi. Acestea nu sunt, insa, toate testele. In fapt, s-au realizat 40 de teste in total, multe fiind fara aprindere. Dintre cele 24 de aprinderi, 15 erau porniri din niste conditii initiale pre-stabilite sau au folosit logica de control noua fata de testele anterioare. Primul test la putere maxima s-a desfasurat pe 11 Iunie 1969, si a durat 3.5 minute. Dupa fiecare test, motorul era racit fortat, insa sistemul folosea hidrogen in loc de azot (o nava spatiala nu poate cara o rezerva suplimentara de lichid doar pt racire).

Nu ne vom apleca asupra fiecarui test in parte, caci rapoartele sunt pline de detalii tehnice lungi si amanuntite. Vom mentiona numai ca testele au fost organizate in cadrul a 10 planuri de testare si vom prezenta rezultatele experimentelor:

  1. motorul a fost pornit cu succes de 24 de ori, 15 din conditii initiale prestabilite sau folosind circuite logice utilizate in premiera;
  2. testele de aprindere au aratat ca caracteristicile de pornire autonoma raman controlabile pe o plaja de temperaturi ale camerei de evacuare foarte mare. In 15 dintre teste, timpul de la prima mutare a TPCV pana la presiune maxima a fost de 12 secunde, +/- 1.7 . 13 dintre acestea au avut timpi de 11-12 secunde, chiar si la diferente de temperatura a camerei de 278 K intre doua teste;
  3. pornirile autonome erau posibile pe o plaja de valori de la +11 la -8.5 grade de rotatie a tamburilor;
  4. rezultatele testelor au aratat ca sistemul automat putea identifica cu succes unghiul de rotatie al tamburilor pentru care se atingea criticalitatea;
  5. s-a reusit pornirea motorului cu o presiune de intrare de numai 159 kPa;
  6. s-a descoperit ca la temperaturi mari, efectul de reflectare a beriliului era neglijabil;
  7. s-au folosit 7 moduri de control automate dependente de temperatura a reactorului, camerei, presiune in camera, pozitia TCPV, nivelul de putere s.a. In fiecare dintre aceste moduri, sistemul de control era suficient de precis si puternic cat sa asigure conditiile pre-programate. In timpul planului 9, in special, s-a demonstrat ca reactorul putea repeta o serie de schimbari de parametrii pre-programata chiar si atunci cand conditiile de pornire erau mult diferite;
  8. rezultatele au indicat ca putea fi definita o procedura care sa permita obtinerea unui timp de pornire constant si repetabil, prin preconditionarea motorului (mai pe romaneste, motorul era usor de aprins si cu caracteristici repetabile de pornire daca inainte de a fi aprins era tinut intr-o anumita conditie; acea conditie a fost determinata experimental si retinuta, importanta sa fiind ca necesita doar pornirea turbopompei pentru aprinderea reactorului, fara schimbarea pozitiei tamburilor);
  9. unul dintre teste a intalnit o serie de varfuri de putere si tranzienti potential problematici pentru o misiune spatiala. Astfel, operativ, s-a decis ca daca un asemenea motor ar fi suferit un SCRAM pe orbita, debitul de hidrogen lichid trebuia oprit repede dupa stingere, pentru a nu permite reaprinderea din efectul de moderare. De asemenea, cand se initia aprinderea iar hidrogenul patrundea intr-un reactor rece, trebuiau urmate anumite restrictii pentru a se asigura ca motorul nu se auto-inabusea;
  10. variatii in presiunea din camera de evacuare indicau ca designul controllerului de oprire nu era suficient optimizat (mai exact, TCPV-ul actiona prea rapid);
  11. la testele de flux la rece, s-a dovedit ca asimetriile de presiune si temperatura erau mai mari folosind hidrogen lichid decat hidrogen gazos;
  12. rezervele de masa de reactie puteau fi realimentate chiar si in timpul functionarii reactorului, cu efecte foarte mici asupra motorului;
  13. aductiunea aerodinamica a standului de teste a functionat dupa previziuni, fara urme de efecte nedorite (ex: rezonante acustice), chiar si la conditii de operare nefavorabile.

Examinarile post-teste asupra elementelor de combustibil au dovedit ca performanta a fost in general buna, cu pierderi moderate de masa, densitati de microcavitati reduse, coroziune usoara, fara elemente sudate si putina fragilizare prin coroziune.

Pierderile de masa si coroziunile in zonele fierbinti au fost usor peste asteptari, cu densitatea microcavitatilor si coroziunile de canal ceva mai ridicate in elementele Y-12. Coroziunea era predominant de tip inelar, cu unele zone indicand efecte legate de testarile la putere mica si de ciclii numerosi de oprire-pornire. De asemenea, unele elemente prezentau usoare urme care indicau, in premiera, stricaciuni provate de hidroliza, datorate timpului lung de functionare. In plus, s-au observat usoare coroziuni cu tipar striat pe unele elemente periferice. Fisuri de dimensiuni reduse s-au manifestat numai pe elementele periferice, si s-a determinat ca unele dintre ele se datorau proximitatii de alte elemente, generand efecte hidrodinamice turbulente.

Camera de control NERVA, facilitatea 40 de la Jackass Flats, un buncar subteran

Diagrama schematica a XE-PRIME (cu detalii extrem de proaste)

Ansamblul duzei de evacuare a motorului XE-PRIME

XE-PRIME, orientata in jos, pe standul de teste

XE-PRIME, in E-MAD, in urma unui test

 

Sfarsitul?…

Oricum am privi lucrurile, programele NERVA si Rover au fost un succes. Nu doar ca au demonstrat fezabilitatea acestor sisteme, dar au si obtinut in final un motor perfect functional. In 1970, NASA, dupa terminarea analizei asupra XE-PRIME, l-a declarat utilizabil in misiuni (si atat dupa acest moment, cat si inainte, s-au creeat cateva arhitecturi de misiuni si vehicule care urmau sa utilizeze motorul). Pariul AEC ca vor reusi sa construiasca un motor functional din scurt a dat roade.

In schimb, pariul ca NASA va putea face programe ambitioase in continuare nu a avut la fel de mult noroc. Dimpotriva, dupa succesul Apollo, NASA si-a vazut bugetul injumatatit in numai cativa ani. NERVA era, teoretic. sub egida comuna a AEC, dar chiar si asa, programul s-a gasit in situatia de a oferi ceva (un sistem de propulsie) pe care nu si-l dorea nimeni. In retrospectiva, pare evident ca eforturile LASL si SNPO erau sortite esecului, dar, daca citim marturiile si citatiile primite de directorii si inginerii programului, vedem ca ei nu priveau lucrurile astfel. NERVA era „motorul martian” menit sa deschida sistemul solar. Dupa Apollo, cum se putea ca NASA sa renunte la ambitii? Ei bine, asa s-a intamplat, din mai multe motive: desi publicul a adorat memoria lui Kennedy (in jurul caruia s-a creeat o intreaga mitologie) si gloria primilor pasi pe Luna, adevarul este ca oamenii au memoria scurta. Ei, deja uitand sperieturile provocate de sovietici (care, in acel moment, erau vizibil in urma, si pe punctul de a renunta), si-au pierdut repede interesul in favoarea unor subiecte mai „normale” (Vietnam, miscarea sindicalista, sumedenia de schimbari de garda aduse de alegerile congresionale din acei ani, etc). In plus, deja ajunsese la urechile publicului cum ca programul dusese la emanatii de material radioactiv (ceea ce era adevarat, dar mult mai benign si decat cel mai mic test de arma atomica). Asadar, curentul de scepticism era ridicat, mai ales ca aceasta perioada de timp nu era caracterizata de mari populizatori ai stiintei (Von Braum intrand intr-un con de umbra, iar Sagan nefiind, inca, o personalitate importanta).

Richard Nixon ajunge presedinte in 1969, dupa o lunga perioada dificila din punct de vedere politic (8 ani de pribegie in urma pierderii alegerilor din 1960 in fata defunctului Kennedy). Dupa 8 ani de control democrat, partidul republican simtea nevoia sa-si puna amprenta din nou pe politica americana. Desi multi dintre senatori si deputati nu erau neaparat impotriva tehnologiei (in fapt, Congresul acestei perioade era, in unele privinte, chiar mai prietenos decat cel precedent, speriat de costul Apollo) pur si simplu nu exista bugetul necesar pentru noi proiecte fara a renunta la cele vechi. Ca atare, Nixon a inchis definitiv linia de productie a Saturn V, facand ca misiunile bazate pe acel sistem (inclusiv cele nucleare) sa moara. In acelasi timp, a introdus un proiect pentru o nava spatiala reutilizabila cu capacitatea de a ateriza pe un aeroport ca un avion normal, si care, in timp, s-a transformat in naveta spatiala americana. Contomitent, programul NERVA a fost pus in conservare, iar Rover a primit un buget extrem de mult redus.

Chiar si asa, SNPO a dispus realizarea NF-1 folosind acel buget redus. Planul era ca elementele de combustibil sa fie cercetate si perfectionate (cum nu se reusise la timp in cadrul PEWEE si NERVA) in vederea constructiei unei trepte superioare cu propulsie nucleara care sa incapa in cala de transport a viitoarei navete. Din pacate, naveta intarzia (pentru ca, desi NASA a primit misiunea de a o realiza, nu a primit si bugetul necesar, fiind astfel fortata sa coopteze ajutorul USAF, ducand la schimbarile de design, care au transformat-o intr-un megaproiect tehnologic impresionant, dar cu utilitate scazuta), iar Nixon, spre deosebire de Kennedy si Johnson, era dispus sa asculte de organele consultative de stat care cereau anularea sa (cum ar fi Oficiul de Management al Bugetului, care nu era, in general, in favoarea explorarii spatiale).

Dupa un an de functionare minimala, Nixon a incercat (din nou) sa opreasca proiectele definitiv. A esuat multumita unui ultim efort din partea lui Clinton P. Anderson, si chiar a pierdut sprijinul congresului pentru unul dintre proiectele sale noi (avionul supersonic Boeing 2707). Insa doar a fost o amanare. Anderson era in varsta, si nu mai beneficia de acelasi sprijin politic, iar cu un public sceptic, democratii nu se mai puteau orienta catre spatiu in aceeasi masura. Ca atare, in 1972, programul Rover a fost oprit iar NERVA definantata. Specialistii au fost redistribuiti laboratoarelor, iar facilitatile abandonate.

Exista voci care spun ca, de fapt, multi oameni importanti nu au dorit succesul programului. La urma urmei, era potential periculos sa se reaprinda imaginatia publicului, lucru oricand posibil daca NASA decidea o publice o arhitectura de misiune mai aventuroasa. De asemenea, s-a spus ca Nixon a dorit sa stearga cu buretele memoria omului care i-a provocat lunga perioada de pribegie politica (lucru de care ma indoiesc; ei erau mai prietenosi unul cu altul decat se crede). Realitatea, cred eu, este ca, pur si simplu lumea nu era pregatita. Dupa cum s-a vazut in articolele domnului Marius B. noi nu stiam nici pe departe destule despre Marte cat sa incercam o misiune. D-abia in 1978 au venit primele date concrete despre ea (si care s-au dovedit diferite de ceea ce se presupunea pana in acel moment, necesitand abandonarea multor arhitecturi precedente). Iar motoarele NERVA si PEWEE, desi superioare propulsiei chimice, erau inca neoptimizate. Cunostiintele nucleare avansasera, (si mai tarziu cu popularizarea computerelor, au explodat) dar in acel moment nu permiteau teribil de multe. In plus, construit sub imperiul necesitatii de a castiga cursa spatiala, Rover a fost marcat de o usoara tendinta de a incerca sa construiasca motoare relativ nefinisate pe banda rulanta, fapt ce le-au afectat bugetul si reputatia, oferind munitie opozantilor.

Dar acesta nu a fost sfarsitul rachetelor nucleo-termice cu miez solid. Nicidecum, dimpotriva, conceptul pare ca are tendinta sa iasa la suprafata din nou la o anumita perioada de timp, cu concepte noi dar principii similare. Rover si NERVA nu au reusit sa construiasca ceva care sa zboare, dar au reusit sa creeze si sa documenteze in detaliu un intreg domeniu, sadind semintele unor incercari viitoare de reinviere. Mentionam aici lucrarile din anii 80-90 pentru Timberwind, SNRE si MITEE, precum si lucrarile actuale legate de BWRT. De asemenea, motoarele acestea au fost concepute ca fiind parte a unor evolutii iterative, de la un miez solid la unul lichid, si, in final, unul gazos. Acestea au continuat ca si studii dupa oprirea programelor pana in anii 80-90. Nu in ultimul rand, ele au reaparut, spre surprinderea multora, in anii 80 in URSS. Aparent, sovieticii construisera pe NV, in secret, un motor NTR.

Toate acestea vor fi discutate si povestite in articole viitoare. Insa, spre deosebire de cele de pana acum, ele vor fi mult mai succinte, din simplul motiv ca majoritatea nu au fost testate. Ele erau motoare de hartie, la fel ca si conceptele de misiuni bazate pe ele. In seria urmatoare, insa, voi trece in revista cateva arhitecturi de misiune bazate pe NERVA si Rover. Ele nu vor fi foarte detaliate, planificatorii nereusind sa le descrie profund pana la finalizarea programelor. Chiar si asa, perspectivele foarte bune oferite de aceste motoare (enorm de multa putere, viata lunga, independenta de masa de reactie, robustete) au ramas tentante pana in ziua de astazi.
 

Sfârșit

Marian Dumitriu (Checkmate)

Surse:
1. Jungmin Kang, Frank N. von Hippel – U-232 and the Proliferation Resistance of U-233 in Spent Fuel, Science & Global Security, Volume 9 pp 1-32, 2001
2. http://nuclearweaponarchive.org/Nwfaq/Nfaq6.html#nfaq6.2

3. https://science.sciencemag.org/content/160/3831/953
4. https://www.osti.gov/servlets/purl/1132518
5. TRW Space Technology Laboratories – Mission oriented advanced nuclear system parameters study, 1965
6. https://www.osti.gov/servlets/purl/4098602

7. Bussard report, 1953
8. W.H. Robbins, H.B. Finger – An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program, 1991
9. James A Dewar – To the end of the solar system : the story of the nuclear rocket, 2015
10. Solid Core NTR ( https://beyondnerva.com/nuclear-thermal-propulsion/solid-core-ntr/ )
11. NTR Hot Fire Testing Part I: Rover and NERVA Testing ( https://beyondnerva.com/2018/06/18/ntr-hot-fire-testing-part-i-rover-and-nerva-testing/ )
12. http://www.projectrho.com/public_html/rocket/enginelist2.php#id–Nuclear_Thermal
13. David S. Portee – Think Big: A 1970 Flight Schedule for NASA’s 1969 Integrated Program Plan ( https://spaceflighthistory.blogspot.com/2016/01/thinking-big-traffic-model-for-nasa.html )
14. David S. Portee blog ( http://spaceflighthistory.blogspot.com/2016/02 )
15. Scott Lowther Nerva articles ( http://www.aerospaceprojectsreview.com/blog/?s=nerva&searchsubmit= )

16. Nuclear weapon design ( https://en.wikipedia.org/wiki/Nuclear_weapon_design )

Loading spinner

The post Stele verzi – Rover, ‘dulaul’ astronuclear (episodul 12) appeared first on Romania Military.

Articol original

Stele verzi – Rover, ‘dulaul’ astronuclear (episodul 11)

NRX A5

NRX A5 a fost primul dintre cele doua variante care aveau sa concureze pentru onoarea de a fi selectionate ca si modelul de baza al sistemului final, denumit XE-PRIME (concurentul sau fiind NRX A6).
A5 era similar cu reactoarele precedente, avand un miez cu 1584 de elemente de combustibil placate cu NbC pe toate suprafetele externe. Spre deosebire de modelul A3, in acest caz, toate elementele fusesera supuse acestui procedeu. Altminteri, se folosisera aceleasi materii prime, tehnici de extrudare si parametrii ai procesului de invelire ca si pentru EST.
De asemenea, duza de evacuare a prototipului A5 era identica, cu un raport de expansiune de 10:1. Elementele de combustibil fusesera fabricate de catre Uzinele Astronucleare Westinghouse (Westinghouse Astronuclear Facilities – WAFF) cat si la uzina de stat Y-12. In cazul stratului de NbC, el era de 0.038 mm la Y-12 si 0.045 mm la WAFF.

Se pot enumera o serie de diferente fata de sistemele precedente:

  • eliminarea tevii de aluminiu care inconjura exteriorul reflectorului intern de grafit
  • tigle de pyrografit de lungime intreaga
  • distantiere modificate pe blocurile de sprijin structural
  • capete modificate
  • tamburi de control modificati pentru a minimiza inconvoierea termica
  • repozitionare a inelului de impedanta a reflectorului
  • tijele de sustinere erau fabricate din Inconel 718, in loc de Inconel 750
  • diferite elemente experimentale fara incarcatura de combustibil
  • profile de invelire a canalelor diferite fata de precedentele
  • doua elemente cu canale prezentand un strat superior de molibden

Primul test de aprindere a fost efectuat pe 8 Iunie 1966, si a constat intr-un prag putere la o temperatura a camerei de 1083 K vreme de 130 de secunde, urmata apoi de o ridicare a temperaturii la 2167 K. Odata ajuns la putere maxima, reactorul a trecut printr-o serie de oscilatii de putere, care au durat 25 de secunde.
Testul a continuat la putere maxima vreme de 15.4 minute, la o temperatura de 2056 K.

Al doilea test la putere maxima, intreprins pe 23 Iunie, a atins un nivel de putere de peste 1050 MWth, la o temperatura de peste 2222 K Timpul a fost de 14.5 minute, insa testul a fost oprit in clipa in care s-a constatat o pierdere evidenta de reactivitate.

In total, timpul acumulat la putere maxima a fost de 22.4 minute la peste 2222 K , si 30.1 minute peste 2056 K. De asemenea, s-a demonstrat capacitatea de reaprindere de la un nivel de putere foarte redus (30 kW; foarte important in cazul in care o nava spatiala sufera o oprire neplanificata).

La analiza post-test s-a descoperit si cauzele oscilatiilor care afectasera reactorul: semnalul primit de la una din sondele de temperatura devenise „zgomotos”, dand impresia unor varfuri de temperatura. Aceste oscilatii au incetat in clipa in care sistemul a respins semnalele primite de la aceasta termocupla, permitandu-i sa functioneze normal (pentru curiosi, bucla de control de care tinea acea termocupla era gandita sa detecteze daca debitul de racire era insuficient, si purta numele de „no-flux loop”). In urma testului, sistemul a fost modificat pentru a preveni astfel de evenimente.

Interesant si diferit de testele anterioare, acest motor era racit fortat, folosind un sistem de pompare cu azot lichid. Azotul era administrat intr-o serie de „pulsuri”. Se estima ca pentru racirea sistemului dupa un test erau necesare, in medie, 20 de pulsuri. Debitul de azot in timpul unui puls era de 2.3 kg/sec.

Tot la dezasamblare s-a constatat o diferenta majora intre pierderile de masa ale ansamblelor de combustibil fabricate la WAFF si Y-12. Unde la Y-12 ele erau de ordinul a 16 g/element, la WAFF erau 37 g/element. De asemenea, numai 9.7% dintre elementele Y-12 erau rupte, comparativ cu 70% din elementele WAFF. In fapt, s-a descoperit (deloc surprinzator) ca exista o corelatie intre elementele rupte si cele care suferisera cele mai proeminente pierderi de masa.
Desi performanta la captele fierbinti era superioara elementelor folosite la EST, procentul de elemente fisurate era cu 13% mai mare.

De asemenea, cele doua elemente placate cu molibden au suferit stricaciuni in timpul dezasamblarii. Insa,dupa investigatii, s-a dovedit ca ele suferisera pierderi de masa mult reduse. Mai mult, o comparatie intre elemente taiate axial din aceeasi regiune a miezului a aratat ca molibdenul ajutase la eliminarea coroziunii de zona mediana (lucru care avea sa fie confirmat mai tarziu la testele PEWEE).
 

NRX A6

Reactorul NRX A6 a fost al doilea concurent in mini-cursa pentru finalizarea modelului XE-PRIME. El avea aceeasi configuratie generala ca si seria A2 – A5, adica un miez din grafit, cu reflectoare de beriliu si vas de presiune din aluminiu.
Principalele diferente ale reactorului fata de seriile anterioare erau:

  • eliminarea reflectorului intern de grafit
  • modificari in sistemele de sprijin structural din periferia miezului si zona laterala
  • schimbarea punctului de sprijin (in esenta, spre deosebire de modelele anterioare, acesta „statea” pe capatul care continea duza de evacuare)

La randul lor, acest diferente proveneau din cele doua cerinte pe care modelul trebuia sa le indeplineasca:

  • sa aibe o structura de baza care sa fie scalabila la scara mare (adica aplicabila pentru un model mai mare)
  • sistemele de sustinere a periferiei si sustinere laterala sa ajute la reducerea coroziunii miezului

Miezul A6 era alcatuita dintr-o serie de manunchiuri de combustibil, fiecare alcatuit la randul sau din sase elemente de combustibil si un element central nealimentat. Manunchiul era sprijinit axial de un sistem cu tije structurale atasate placii de suport, tija aferenta fiecarui manunchi trecand prin zona centrala.

Alte deosebiri fata de A5 erau:

  • diferente de incarcare cu combustibil
  • invelisuri diferite
  • mici diferente in maniera de procesare a materialelor prime

Miezul prevedea 14 zone de incarcare, ceea ce necesita 11 niveluri diferite de incarcare. Acestea variau intre 132.4 g/element si 23.9 g/element. Numarul mai mare de zone de incarcare era gandit sa reduca diferentele de putere intre diferite zone ale nucleului, reducand astfel si diferentele de presiune si prevenind aparitia micro-cavitatilor.

De asemenea, grosimea stratului de NbC a fost redusa pentru a-i imbunatati aderenta si distributia de fisuri, si toate elementele aveau un strat de molibden pentru reducerea coroziunii de zona mediana. Elementele beneficiau de tolerante mai stricte (de rigiditate, dimensionale, etc) pentru a le uniformiza.

Motorul a fost testat de doua ori, prima ocazie fiind pe 7 Decembrie 1966. Arderea a fost initiata autonom. Dupa 75 de secunde de operare, insa, sistemele automate au initiat oprirea de urgenta. S-a determinat ca oprirea fusese cauzata de o defectiune electrica, o serie de varfuri de sarcina dand sistemului impresia ca tamburii nu sunt orientati corespunzator. Ca atare, la testele viitoare, s-a decis instalarea unui filtru electronic pe senzorul respectiv. Valoarea debitului atinsa in timpul testului a fost de 18.1 kg/sec.

Testul la putere maxima a fost initiat pe 15 Decembrie 1967. Pragul de putere maxima a fost mentinut vreme de 60 de minute, la o temperatura de peste 2278 K, si o putere de 1125 MW (de fapt 1130 MW energie termica si 1250 MW energie neutronica), cu o presiune de 4089 kPa. Temperatura camerei de evacuare a atins 2300 K iar debitul a fost de 32.7 kg/sec. In timpul testului, temperatura in camera de evacuare era mai redusa decat se preconizase initial, dar chiar si asa semnalul de la senzori era utilizabil pentru sistemul de control automat. S-a speculat ca diferenta putea proveni din aparitia unor zone de curgere turbulenta in apropierea senzorilor.

La oprire s-a folosit din nou racirea cu pulsuri de azot lichid. Nu s-au intampinat probleme sau tranzienti, iar racirea a durat 75.3 ore. S-a mai intreprins un test de scara mica de criticalitate pe 19 Decembrie, azotul lichid fiind folosit pentru a aduce materialul reflectorului si a intrarii in miez la temperatura camerei (pentru curiosi, reactorul nu a fost „aprins”, doar adus dintr-o stare de inghet prin control fin al puterii; in spatiu, temperaturile in lipsa Soarelui sunt de ordinul a 5-10K, si era important sa se vada daca un motor supraracit putea fi adus in stare de pornire dupa ce functionase indelung anterior).

Examinarea post-test a aratat ca durata de functionare mare isi lasase amprenta. Elementele prezentau fisuri axiale severe atat pe suprafetele interne cat si pe cele externe. Mai mult, aceste fisuri se evidentiasera si pe ansamblul de reflectoare cu beriliu. Fisurile se datorau, se pare, unui varf de 200 K care se manifestase la sfarsitul testului. Mai exact, reactorul A6 era primul care utiliza trei inele de beriliu stivuite pentru a forma un reflector monolitic. Prin constrast, modelel anterioare folosisera un sistem cu doua reflectoare, unul fiind un inel de grafit si unul exterior din beriliu cu 12 segmente. Cu doua minute inainte de finalizarea testului, sarcinile termice au depasit capacitatea de rezistenta a reflectorului de beriliu, cauzand aparitia fisurilor. La ele contribuisera si bombardamentul neutronic sever, care a limitat rezistenta materialului (asa numitul „neutron embrittlement”). Era un aspect usor ingrijorator, dat fiind ca A6 era primul reactorul care suferise stricaciuni ale reflectorului (cu exceptia A1, care fusese un test la rece). Totusi, reflectorul a fost adecvat pentru testul intreprins si nu s-au evidentiat dovezi ca fisurile au limitat performanta reactorului.

In privinta elementelor de combustibil, s-au costatat ca unele erau sudate, si prezentau coroziuni de suprafata usoare, densitati de microcavitati reduse, pierderi de masa pe zona mediana reduse si pierderi de masa la capetele fierbinti ceva mai ridicate decat A5. Astfel pierderile totale erau de ordinul a 13.1 g/element (vs 27.0 g/element la A5) , cele mediene de 2.3 g/element (vs 25.8 g/element la A5) iar cele la capetele fierbinti de 10.9 g/element (vs 8.5 g/element la A5).

A6 continea si cateva elemente experimentale care contineau aditivi in matrice, precum si diverse tipuri de invelisuri pe canale. In termeni de microcavitati, coroziuni superficiale si integritate generala, performanta acestor elemente era similara altora din reactor. In concluzie, timpul total de functionare a fost de 62 de minute incontinuu la o temperatura de peste 2278 K. Astfel, recordul precedent a fost dublat, iar rata de coroziune a fost redusa cu aproximativa 75-80% fata de EST si NRX A5. S-a considerat ca performantele imbunatatite s-au datorat tehnologiilor de placare imbunatatite, controlului dimensional mult mai bun, unei atentii sporite acordate fenomenului de expansiune termica si a unei distributii de putere si de presiune interstitiala mai buna. Practic, testul si-a bifat toate obiectivele.

Vedere decupata a reactorului NRX A6

 

Cantecul de lebada

Si astfel am ajuns in anul de gratie 1968. PHOEBUS isi termina testele, demonstrand noi posibilitati si probleme, iar NERVA imbina vechile concepte intr-un concept functional. In lume, rusii bifau esec dupa esec al rachetei N-1, iar americanii aveau drumul catre Luna deschis (Apollo 8 inconjurand Luna in 1968).

Insa, lucrurile nu erau chiar rozalii pentru echipele de la NRDS. Din contra. In momentul in care NERVA isi testa prototipul EST, planurile NASA prevedeau o vizita pe planeta rosie in 1978, o baza lunara in 1981, si numeroase sonde de mari dimensiuni expediate catre Jupiter si Saturn. Apropo de Saturn, racheta cu acelasi nume isi intra in drepturi, expediind primele incarcaturi semnificative catre Luna. Linia de productie lucra la ritm maxim, lar versiunile viitoare urmau sa foloseasca motoare nucleare pentru treapta finala. De fapt, motoarele nucleare aveau numeroase potentiale utilizari in planurile NASA. Insa… planurile NASA trebuiau bugetate, iar razboiul din Vietnam acapara aproape la fel de multa atentie din partea publicului ca si Apollo. Si inca si mai multa din partea Congresului. Specialistii in zboruri spatiale sperau ca planurile post-Apollo aveau sa fie cel putin la fel de ambitioase.

Nu au fost. Cumva era de asteptat. Administratia se schimbase, nou-venitii voiau sa isi puna amprenta. Nu mai era epoca de aur a americanismului, ci se trecea in epoca „groovy” a miscarilor anti-razboi si anti-guvern. Pana si Apollo, astazi mult laudat, era vehement contestat la acea vreme.

In aceste conditii, pare aproape hilar ca inginerii si savantii isi inchipuiau ca vor reusi sa vanda conceptul zborului spatial nuclear unui public atat de sceptic si unor decidenti atat de ostili. Insa, ca orice buni ingineri, era treaba lor sa incerce pana in panzele albe.

Initial, motoarele NERVA trebuiau sa fie parte a unui program extins. Cele prezentate mai sus erau desemnate ca fiind NERVA I. Acestea urmau sa fie surclasate de catre cele de tip NERVA II.
Aceasta a doua generatie de reactoare cu combustibili mai avansati, de dimensiuni mai mari, erau cele care trebuiau sa fie viitorul. NERVA I, la urma urmei, nu erau decat versiuni avansate si optimizate de KIWI. NERVA II urma sa incorporeze si avansurile PEWEE. Insa, pe la jumatatea testelor cu NRX, inginerii au inceput sa simta presiunile decidentilor, si, in acelasi timp, sa observe ca, de fapt, performantele reactoarelor mai putin avansate erau totusi satisfacatoare. Acesta a fost, de fapt scopul nespus al testului EST (altminteri relativ neplanificat): sa isi confirme suspiciunile ca majoritatea acestor misiuni viitoare erau perfect realizabile cu NERVA I.

Cumva, asta a parut o binecuvantare. Specialistii, chiar si cu bugetele tot mai reduse, puteau sa isi indeplineasca obiectivele si inca mult inante de termenul preconizat. Comparativ cu majoritatea programelor de cheltuieli guvernamentale tehnologice (inclusiv unele moderne…) NERVA era on buget si ahead of schedule. Conditiile de continuare certe ale programului tineau de doua aspecte:
ca NASA avea sa-si continue programul ambitios de explorare
ca NERVA (si programul ciuntit Rover, devenit un program de testare, cu surle si trambite, a combustibililor) putea sa se lege de acele intiative NASA

Ei nu aveau de unde sa stie ca NASA urma sa fie zdrobita bugetar incepand cu 1970. Era o amenintare indirecta asupra carora nu avea control.

In schimb, in 1967, se incercase in Congres anularea finantarii. O serie de batalii politice scurte si violente purtate prin saloanele Washingtonului le-au permis functionarea in regim de turatie reduse. Insa, acum exista pericolul ca, chiar daca NASA isi va continua programul spatial, ei nu vor putea face parte din acesta. Nu avea fondurile necesare pentru a construit reactoare pe banda rulanta cum facusera pana atunci. Asadar o decizie trebuia luata.

Si ea a fost luata: isi vor folosi ultimele fonduri pentru a modifica standurile de teste de la Jackass Flats pentru a simula, pe cat posibil, conditiile de functionare spatiala. In esenta, ei aveau sa incerce sa imite facilitatile NASA de testare a motoarelor.

In acelasi timp, cu fondurile mult reduse dar inarmati cu datele experimentale ale multelor teste realizate pana in acel moment, ei aveau sa construiasca un motor care sa se apropie pe cat posibil de o varianta zburabila. Daca motorul avea sa se dovedeasca chiar zburabil (asa cum s-a intamplat, el primid certificare de la NASA) cu atat mai bine. Ideea era de a demonstra CEVA.

Anticipand o situatie dificila, specialistii au renuntat la continuarea campaniei NRX A (care, intial, ar fi trebuit sa prevada si un reactor A7, A8, etc; in schimb, testele acestora din urma s-au realizat pe A5 si A6). Data fiind ca NERVA II nu mai era nici ea necesara, nu era o problema.

O problema, in schimb, erau ca nu-si permiteau sa construiasca un alt reactor. Asadar, au refolosit elemente de la un prototip identic cu NRX A5, si le-au imbunatatit unde au putut.
Asa a rezultat singurul exemplar al celei de-a doua serii NERVA, denumit XE-PRIME.
 

Va urma.

Marian Dumitriu (Checkmate)

Surse:
1. Jungmin Kang, Frank N. von Hippel – U-232 and the Proliferation Resistance of U-233 in Spent Fuel, Science & Global Security, Volume 9 pp 1-32, 2001
2. http://nuclearweaponarchive.org/Nwfaq/Nfaq6.html#nfaq6.2

3. https://science.sciencemag.org/content/160/3831/953
4. https://www.osti.gov/servlets/purl/1132518
5. TRW Space Technology Laboratories – Mission oriented advanced nuclear system parameters study, 1965
6. https://www.osti.gov/servlets/purl/4098602

7. Bussard report, 1953
8. W.H. Robbins, H.B. Finger – An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program, 1991
9. James A Dewar – To the end of the solar system : the story of the nuclear rocket, 2015
10. Solid Core NTR ( https://beyondnerva.com/nuclear-thermal-propulsion/solid-core-ntr/ )
11. NTR Hot Fire Testing Part I: Rover and NERVA Testing ( https://beyondnerva.com/2018/06/18/ntr-hot-fire-testing-part-i-rover-and-nerva-testing/ )
12. http://www.projectrho.com/public_html/rocket/enginelist2.php#id–Nuclear_Thermal
13. David S. Portee – Think Big: A 1970 Flight Schedule for NASA’s 1969 Integrated Program Plan ( https://spaceflighthistory.blogspot.com/2016/01/thinking-big-traffic-model-for-nasa.html )
14. David S. Portee blog ( http://spaceflighthistory.blogspot.com/2016/02 )
15. Scott Lowther Nerva articles ( http://www.aerospaceprojectsreview.com/blog/?s=nerva&searchsubmit= )

16. Nuclear weapon design ( https://en.wikipedia.org/wiki/Nuclear_weapon_design )

Loading spinner

The post Stele verzi – Rover, ‘dulaul’ astronuclear (episodul 11) appeared first on Romania Military.

Articol original
© all rights reserved
made with by templateszoo